R-1, OPPOSITE RAILWAY TRACK, NEW GLASS CORNER BUILDING. ZONE-2, M. P. NAGAR, BHOPAL 畲:(0755) 32 00 000, 98930 5 888 1

SOLUTION OF IITJEE 2012; PAPER 1

IIT-JEE, AIEEE (WITH 12TH, 11TH 10TH, 9TH & DROPPERS) WWW.tekoclasses.com Page: BHARAT MAIN SABSE PAHLE, WEBSITE PAR BHI....

PAPER - II **MATHEMATICS**

41. Four fair dice D_1, D_2, D_3 and D_4 , each having six faces numbered 1,2,3,4,5 and 5, are rolled simultaneously. The probability that D_4 shows a number appearing on one of D_1, D_2 and D_3 is

(a)
$$\frac{91}{216}$$
 (b) $\frac{108}{216}$

(c)
$$\frac{125}{216}$$
 (d) $\frac{127}{216}$

Ans. (A)

42. If P is 3×3 matrix such that P^T is the transpose of P and L is the 3×3 identity matrix, then there exists a

column matrix
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 such that
(a) $PX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ (b) $PX = X$
(c) $PX = 2X$ (d) $PX = -X$ (a) Q (b) $\frac{\pi^2}{2}$
(c) $PX = 2X$ (d) $PX = -X$ (a) Q (b) $\frac{\pi^2}{2}$

® ENJOY MATHEMATICS

43. Let
$$\alpha(a)$$
 and $\beta(a)$ be the roots the equation
 $(\sqrt[3]{1+a}-1)x^2 + (\sqrt{1+a}-1)x + (\sqrt[-1]{6}\sqrt{1+a}-1) = 0$
where $a > -1$.

 $-\frac{5}{2}$ and 1 (b) $-\frac{1}{2}$ and -1 (a) 3

(c)
$$-\frac{7}{2}$$
 and 2 (d) $-\frac{9}{2}$ and 3
Ans. (B)

The equation of a Plane apssing through the line 44. of intersection of the planes x + 2y + 3z = 2 and

$$x - y + z = 3$$
 and at a distance $\frac{2}{\sqrt{3}}$ form the point

$$(3,1,-1)$$
 is

5x - 11y + z = 17(a) $\sqrt{2x} + y = 3\sqrt{2} - 1$ (b)

 $x + y + z = \sqrt{3}$ (c) $x - \sqrt{2}y = 1 - \sqrt{2}$ (d) (A) Ans. 45. Let $a_1, a_2, a_3...$ be in harmonic progression with $a_1 = 5$ and $a_{20} = 25$. The least positive integer n for which $a_n < 0$ is (a) 22 (b) 23 24 (c) (d) 25 Ans. (D) If a and b are vectors such that $|a+b| = \sqrt{29}$ 46. and $a \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \hat{b}$, then a possible İS x - 4

(c)
$$\frac{\pi^{-}}{2} + 4$$
 (d)
Ans. (B)

Let PQR be a triangle of area Δ with $a = 2, b = \frac{7}{2}$ 48.

2

and $c = \frac{5}{2}$, d where a, b and c and the lengths of the sides of the triangle opposite to be angles at P, Q, and R respec-

tively. Then
$$\frac{2\sin P - \sin 2P}{2\sin P + \sin 2P}$$
 equals

(a)
$$\frac{3}{4\Delta}$$
 (b) $\frac{45}{4\Delta}$ (c) $\left(\frac{3}{4\Delta}\right)^2$ (d) $\left(\frac{45}{4\Delta}\right)^2$
Ans. (C)

F

ENJOY MATHE WITH SUHAA	R-1, OPPOSITE RAILWAY TRACK, NEW GLASS CORNER BUILDING, ZONE-2, M. P. NAGAR, BHOPAL
SOLUTION OF IITJEE 2012; PAPER 1 ; BHARAT MAIN SABSE PAHLE, WEBSITE PAR BHI	
Paragraph for Questions 49 and 50	(b) P is true and Ω is false
Let a_n denote the number of all n-digit positive	(c) P is false and Q is true
fromed by the digits 0,1 or both such that no consecutive	(d) both P and Q are false
digits in thems are 0. Let b_n = the number of such n-digit	ANS. (C)
integers ending with digit 1 and c_n = the number of such n-	34. Which of the following true ?
digit integers ending with digit 0.	(a) g is increasing on $(1, \infty)$
49. The value of b_6 is	(b) g is decreasing on $(1,\infty)$
(a) 7 (b) 8 (c) (d) 11	(c) σ is increasing on (1.2) and decreasing on $(2, \infty)$
(c) 9 (d) 11 ANS. (B)	(c) g is increasing on (1,2) and decreasing on (2,)
50. Which of the following is correct ?	(d) g is decreasing on $(1,2)$ and increasing on $(2,\infty)$
(a) $a_{17} = a_{16} + a_{15}$ (b) $c_{17} \neq c_{16} + c_{15}$	ANS. (B) MORE THAN ONE MAY CORRECT TYPE
(c) $b_{17} \neq b_{16} + c_{15}$ (d) $a_{17} = c_{17} + b_{16}$	55. If $f(x) = \int_{-\infty}^{x} e^{t^2} (t-2)(t-3) dt$ for all $x \in (0,\infty)$.
ANS. (A) Prograph for Questions 51 to 52	then $J = J_0$
A tangent PT is drawn to the circle $x^2 + y^2 = 4$ all	(a) f has a local maximum at $x = 2$ (b) f is decreasing on (2.2)
the point $P(\sqrt{3}, 1)$ A straight line L perpendicular to PT is	(b) I is decreasing on (2,3) (c) there exists some $a \in (0, \infty)$ such that $f''(a) = 0$
the point $T(\sqrt{3},1)$. Astraight line L, perpendicular to T is	(c) there exists some $c \in (0, \infty)$ such that $f(c) = 0$ (d) that a local minimum at $x = 3$
a tangent to the circle $(x-3)^2 + y^2 = 1$.	Ans. (A,B,C,D)
51. A common tangent of the two circles is	56. For every integer n, let a_n and b_n be real numbers.
(a) $x = 4$ (b) $y = 2$	Let function $f: IR \to IR$ be given by
(c) $x + \sqrt{3}y = 4$ (d) $x + 2\sqrt{2}y = 6$	$\begin{bmatrix} a_n + \sin \pi x, & \text{for } x \in [2n+1] \end{bmatrix}$
Ans. (D)	f(x) for all integers n
52. A possible equation of L is (a)	$b_n + \cos \pi x$, for $x \in (2n-1, 2n)$,
(a) $x - \sqrt{3y} = 1$ (b) $x + \sqrt{3y} = 1$	for all integers n. If f is continuous, then which of the follow-
(c) $x - \sqrt{3}y = -1$ (d) $x + \sqrt{3}y = 5$	ing hold(s) for all n ?
Ans. (A)	(a) $a_{n-1} - b_{n-1} = 0$ (b) $a_n - b_n = 1$
Pragraph for Questions 55 to 54	(c) $a_n - b_{n+1} = 1$ (d) $a_{n-1} - b_n = -1$
Let $f(x) = (1-x)^2 \sin x + x^2$ for all $x \in IR$, and	Ans. (B,D)
let $g(x) = \int_{1}^{x} \left(\frac{2(t-1)}{t+1} - Int\right) f(t) dt$ for all $x \in (1,\infty)$	57. If the straight lines $\frac{x-1}{2} = \frac{y+1}{k} = \frac{z}{2}$ and
53. Consider the statements : P: There exists some we ID such that	$\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{k}$ are coplanar, then the plane(s) contain-
$x \in IK \text{such that}$	ing these two line is (are)
$f(x) + 2x = 2(1 + x^2)$	(a) $y+2z = -1$ (b) $y+z = -1$
Q: There exists some $x \in IR$ such that	(c) $y-z=-1$ (d) $y-2z=-1$
2f(x) + 1 = 2x(1+x)	Ans. (B,C)

Then

(a) both P and Q are true

(d)
$$P(X^C Y) = \frac{1}{3}$$

Ans. (A,B)